

Available online at www.sciencedirect.com



Tetrahedron Letters 45 (2004) 6179-6181

Tetrahedron Letters

## Total synthesis of the marine cytotoxic caulibugulones A-D

David Alagille,<sup>a</sup> Ronald M. Baldwin<sup>a</sup> and Gilles D. Tamagnan<sup>a,b,\*</sup>

<sup>a</sup>Department of Psychiatry, Yale University and VAHCS, 950 Campbell Avenue, West Haven, CT 06516, USA <sup>b</sup>Institute for Neurodegenerative Disorders, 60 Temple Street, Suite 8B, New Haven, CT 06510, USA

Received 14 May 2004; revised 27 May 2004; accepted 2 June 2004

Abstract—We report the first total synthesis of the cytotoxic marine alkaloids caulibugulone A–D. This synthesis confirmed the assigned structures and provided sufficient material for further biological testing.

© 2004 Elsevier Ltd. All rights reserved.

Marine organisms such as sponges, tunicates, coelenterates, and phytoplankton have proven to be a valuable source of biologically active secondary metabolites.<sup>1</sup> Very recently, Milanowski et al.<sup>2</sup> identified four new isoquinoline quinone derivatives and two iminoquinones, termed caulibugulones A–F (Fig. 1) from the marine bryozoan *Caulibugula intermis* Harmer (Bugulidae) and reported interesting cytotoxic activity. A number of isoquinoline quinones, including the renierones<sup>3,4</sup> and cribrostatins<sup>5,6</sup> have been isolated and reported to exhibit antimicrobial and antitumor activity. Quinoneimines are well represented in marine alkaloids, such as isobatzellines,<sup>7</sup> makaluvamines,<sup>8,9</sup> and secobatzellines A–B,<sup>10</sup> and exhibit interesting cytotoxic and antimicrobial profiles. The structural characteristic of caulibugulones is an isoquinoline-5,8dione carrying a substituted amino group in position-7 and substituted at position-6 by hydrogen, bromine or



Figure 1.  ${}^{a}IC_{50}$  are expressed in  $\mu g/mL$  against the murine  $IC-2^{WT}$  cell line in an in vitro antiproliferative assay.<sup>2</sup>

Keywords: Caulibugulones A-D; Isoquinoline-5,8-diones; Cytotoxicity.

<sup>\*</sup> Corresponding author. Tel.: +1-2034014309; fax: +1-2037892119; e-mail: gtamagnan@indd.org

<sup>0040-4039/\$ -</sup> see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.007



Scheme 1. Reagents and conditions: (a) sulfanilic acid, NaNO<sub>2</sub>,  $H_2SO_4$ , AcOH, AcONa; (b) NaOH, Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>; (c)  $K_2Cr_2O_7$ ,  $H_2SO_4$ ;<sup>11</sup> (d) NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH, CeCl<sub>3</sub>, EtOH, rt; (e) MeNH<sub>2</sub>, CeCl<sub>3</sub>, EtOH, rt; (f) NBS, MeOH, rt; (g) NCS, MeOH, rt.





chlorine (caulibugulones A–D, 1–4). Caulibugulones E and F are analogues of caulibugulone A (1) carrying an imine group at position-5. As part of an ongoing effort on synthesis of new bioactive heterocycles, the present paper describes the first de novo synthesis of caulibugulones A–D.

The key intermediate 5,8-isoquinolinedione (7) was prepared in three steps (30% overall yield) according to the methodology described by Joseph and Joullie <sup>11,12</sup> starting from the commercially available 5-aminoisoquinoline (5) as outlined in Scheme 1. Compound 7 was converted regioselectively to  $1^{13}$  (74%) and  $4^{13}$  (50%) by oxidative amination with methylamine or 2-aminoethanol in ethanol in the presence of CeCl<sub>3</sub> (Scheme 1). The regioselectivity of this reaction can be explained by resonance stabilization of the 1,4-adduct at C-7 via the pyrinoid nitrogen (Fig. 2), which favors substitution at C-7. Subsequent treatment of 1 with *N*-bromosuccinimide or *N*-chlorosuccinimide in methanol provided the desired compound  $2^{13}$  and  $3^{13}$  in 97% and 94% yield, respectively (Scheme 1).

In conclusion, the synthesis of the naturally occurring caulibugulones A–D confirmed the assigned structures and provided sufficient material for further biological testing.

## Acknowledgements

This work was supported in part by the National Institutes of Health (DA16180-01) and from Department of Veterans Affairs, National Center for PTSD Alcohol Research.

## **References and notes**

- 1. Faulkner, D. J. Marine natural products. *Nat. Prod. Rep.* 2002, 19, 1–48.
- Milanowski, D. J.; Gustafson, K. R.; Kelley, J. A.; McMahon, J. B.; Caulibugulones, A.-F. Novel cytotoxic isoquinoline quinones and iminoquinones from the marine bryozoan *Caulibugula intermis. J. Nat. Prod.* 2004, 67, 70– 73.
- McIntyre, D. E.; Faulkner, D. J.; Van Engen, D.; Clardy, J. Renierone, an antimicrobial metabolite from a marine sponge. *Tetrahedron Lett.* 1979, 20, 4163–4166.
- Frincke, J. M.; Faulkner, D. J. Antimicrobial metabolites of the sponge *Reniera* sp. J. Am. Chem. Soc. 1982, 104, 265–269.
- 5. Nakahara, S.; Numata, R.; Tanaka, Y.; Kubo, A. Synthesis of cribrostatins 1 and 2. *Heterocycles* **1995**, *41*, 651–654.
- Pettit, G. R.; Knight, J. C.; Collins, J. C.; Herald, D. L.; Pettit, R. K., et al. Antineoplastic agents 430. Isolation and structure of cribrostatins 3, 4, and 5 from the Republic of Maldives *Cribrochalina* sp. J. Nat. Prod. 2000, 63, 793–798.
- Sun, H. H.; Sakemi, S.; Burres, N.; McCarthy, P. Isobatzellines A, B, C, and D. Cytotoxic and antifungal pyrroloquinoline alkaloids from the marine sponge Batzella sp. J. Org. Chem. 1990, 55, 4965–4966.
- Radisky, D. C.; Radisky, E. S.; Barrows, L. R.; Copp, B. R.; Kramer, R. A., et al. Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. Am. Chem. Soc. 1993, 115, 1632–1638.
- Barrows, L. R.; Radisky, D. C.; Copp, B. R.; Swaffar, D. S.; Kramer, R. A., et al. Makaluvamines, marine natural products are active anti-cancer agents and DNA topo II inhibitors. *Anti-Cancer Drug Des.* **1993**, *8*, 333–347.
- Gunasekera, S. P.; McCarthy, P. J.; Longley, R. E.; Pomponi, S. A.; Wright, A. E. Secobatzellines A and B, two new enzyme inhibitors from a deep-water Caribbean sponge of the genus *Batzella*. J. Nat. Prod. **1999**, 62, 1208– 1211.
- Joseph, P. K.; Joullie, M. M. 5,8-Isoquinolinediones. I. Synthesis of 5,8-isoquinolinedione. J. Med. Chem. 1964, 44, 801–803.

- Jouille, M. M.; Puthenpurayil, J. K. 5,8-Isoquinolinediones. II. (1a) Chemical and electrochemical behavior of the 5,8-isoquinoline system (1b). *J. Heterocycl. Chem.* 1969, 6, 697–705.
- 13. Spectral data of selected compounds: The <sup>1</sup>H and <sup>13</sup>C spectrum for caulibugulones A–D (1–4) were identical to those described.<sup>2</sup> Compound 1: purification (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 95:5), red solid, mp = 208–210 °C (dec), HRMS calcd for  $C_{10}H_8N_2O_2$  (M+): 188.0585, found

188.0587. Compound **2**: purification (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/ MeOH 95/5), red solid, mp = 183–185 °C (dec), HRMS calcd for C<sub>10</sub>H<sub>7</sub>BrN<sub>2</sub>O<sub>2</sub> (M+): 265.9690, found 265.9694. Compound **3**: purification (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 95:5), red solid, mp = 151–153 °C (dec), HRMS calcd for C<sub>10</sub>H<sub>7</sub>ClN<sub>2</sub>O<sub>2</sub> (M+): 222.0196, found 222.0198. Compound **4**: purification (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 90:10), red solid, mp = 173–175 °C, HRMS calcd for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub> (M+): 218.0691, found 218.0684.